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Overview

WarpAttack exploits compiler-introduced double-fetch optimizations to
mount TOCTTOU attacks.

• Introduce the vulnerability

• Present the mechanism underlying the attack and practical PoC

• Evaluation and mitigations
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Introduction

C/C++ software are prone to memory corruption bugs that often enable
code execution attacks.

• ASLR

• Canaries

• CFI

Not a total solution!
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Double-Fetch

”Double-fetch bugs occur when a privilege system reads a variable multiple
times, but the fetched value is inconsistent due to concurrency issues”
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Double-Fetch

”Double-fetch bugs occur when a privilege system reads a variable multiple
times, but the fetched value is inconsistent due to concurrency issues”

• CVE-2008-2252: Windows
• CVE-2005-2490: Linux kernel
• CVE-2015-1420: Linux kernel (Android)
• CVE-2022-48357: Huawei products

:
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Bound-Checked Jump Table

The code for a jump table lookup consists of

• a bound check;

• an indirect jump (whose address is computed with the checked value).
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Assumptions

Adversarial Capabilities

• Arbitrary read-write

• Thread control

• Gadgets: switch jump table with a compiler-introduced double-fetch

Defensive Assumptions

• Non-Executable Memory

• Randomization

• Control Flow Protection
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PoC Exploit

The victim: a complex and realistic target available for all common
operating systems

Version: 106.0.1
Built by: GCC 12.1.1
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PoC Exploit

• Gain arbitrary read/write capability

• Leak ASLR bases for both libxul.so and the stack

• Find double-fetch gadgets of bound-checked indirect jumps

• Reaching gadget code

• Orchestrate the thread scheduling to win the data race

• Overwrite the checked object and hijack the control flow
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1 the address of the fetched object
2 the address of the victim jump table: .rodata section of libxul.so
3 the address of one writeable memory region: .bss section of
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out-of-bound Uint8Array → leak ArrayBuffer. elements → libxul
base address → environ → stack base address
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Gadget Code Detection

Binary Analysis tool

• designed for offensive purposes

• based on Radare2

• heuristics for x86/64 architectures

• binary pattern: combination of vulnerable elements
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Benchmarks

Intel(R) Core(TM) i7-10700 CPU (8 cores) @ 2.90GHz with 32GB of
memory and Fedora 36
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Real-World Impact

• Do compiler-introduced double-fetch gadgets exist in real programs?

• Which compiler is affected by such situation?

• Which CFI implementation is vulnerable to WarpAttack?

• What architectures are affected by WarpAttack?
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Victim Code in the Wild
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A Study of Compilers
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Vulnerable CFI implementations
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Vulnerable Architectures
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Mitigations

• Avoiding Gadget code generation

• Protecting Indirect Jump

• Monitoring for Attack Behavior

• Making compilers aware of sensitive code
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Mitigations

• Avoiding Gadget code generation: GCC’s -fno-switch-tables
Clang, MSVC optimization level > O0

• Protecting Indirect Jump: dynamic checks

• Monitoring for Attack Behavior: spawning several threads, constantly
writing a certain memory site; crashes; ...

• Making compilers aware of sensitive code: annotating security-related
code
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Based on the work of

J. Xu, L. Di Bartolomeo, F. Toffalini, B. Mao, M. Payer

Thank You.
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https://nebelwelt.net/files/23Oakland3.pdf
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