WarpAttack: Bypassing CFI through

Compiler-Introduced Double-Fetches

Marco Antonio Corallo (UniPi)

Marco Antonio Corallo

University of Pisa

Course of ICT Risk Assessment

WarpAttack

July 17, 2023

Overview

WarpAttack exploits compiler-introduced double-fetch optimizations to
mount TOCTTOU attacks.

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Overview

WarpAttack exploits compiler-introduced double-fetch optimizations to
mount TOCTTOU attacks.

® |ntroduce the vulnerability

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Overview

WarpAttack exploits compiler-introduced double-fetch optimizations to
mount TOCTTOU attacks.

® |ntroduce the vulnerability

® Present the mechanism underlying the attack and practical PoC

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Overview

WarpAttack exploits compiler-introduced double-fetch optimizations to
mount TOCTTOU attacks.

® |ntroduce the vulnerability
® Present the mechanism underlying the attack and practical PoC

® FEvaluation and mitigations

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Overview

@ Introduction

® Background

© Proof of Concept

O Gadget Code Detection
@ Evaluation

® Mitigations

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Overview

@ Introduction

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Introduction

C/C++ software are prone to memory corruption bugs that often enable
code execution attacks.

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

C/C++ software are prone to memory corruption bugs that often enable
code execution attacks.

e ASLR

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

C/C++ software are prone to memory corruption bugs that often enable
code execution attacks.

e ASLR

® Canaries

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Introduction

C/C++ software are prone to memory corruption bugs that often enable
code execution attacks.

e ASLR
® Canaries
e CFI

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Introduction

C/C++ software are prone to memory corruption bugs that often enable
code execution attacks.

e ASLR
® Canaries
e CFI

Not a total solution!

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Introduction

Compiler-introduced double-fetch of a bound-checked indirect jump with a
jump table

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Introduction

Compiler-introduced double-fetch of a bound-checked indirect jump with a
jump table

30,000-foot view

mov rl, [A] —@ Memory iAﬂacker
cmp rl, imm

; may mov [A'], rl K : i Rewrite A: ensure
-] ja Oxdef (] A: Checked Object not default branch
v 9"(77777777777777777777 v

mov r2, [A]/[A']

mov r2, [r3+ r2*4]
add r2, 3

jmp r2 - B: Controlled Object

‘»){ ;0xdef: default branch |

—

Rewrite A/A":
let the jump fetch
address from B

) Jump Table 1 Rewrite B:
address to the
'C malicious target

;Oxdeadbeef: malicious
target

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Overview

® Background

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Double-Fetch

"Double-fetch bugs occur when a privilege system reads a variable multiple
times, but the fetched value is inconsistent due to concurrency issues”

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Double-Fetch

"Double-fetch bugs occur when a privilege system reads a variable multiple
times, but the fetched value is inconsistent due to concurrency issues”

Victim thread Memory state Attacker thread
I | Check([A]) | I q [A]l=12 ‘
‘ [A] = Oxdeadbeef I I |[A] = Oxdeadbeef I
A
| | var = [A] | I (:' [A] = Oxdeadbeef ‘

[o |
om0 |

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Double-Fetch

"Double-fetch bugs occur when a privilege system reads a variable multiple
times, but the fetched value is inconsistent due to concurrency issues”

CVE-2008-2252: Windows
CVE-2005-2490: Linux kernel
CVE-2015-1420: Linux kernel (Android)
CVE-2022-48357: Huawei products

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Bound-Checked Jump Table

The code for a jump table lookup consists of
® a bound check;
® an indirect jump (whose address is computed with the checked value).

~h (obj->type) {

1 ;switc

2 case 0:

3 .

4 ; default

5 ;.

6 ;)

7 mov rax, rdi

8§ mov eax, DWORD PTR [rdi+0x30]
9 add eax, Oxffffffff

10 cmp eax, 0x11 ,;the bound check
1 ja 401163 ;default branch

12 lea rdi, [rax+0x30]

13 jmp QWORD PTR [rax*8+0x402008]

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Assumptions

Adversarial Capabilities

® Arbitrary read-write

Defensive Assumptions

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Assumptions

Adversarial Capabilities
® Arbitrary read-write

® Thread control

Defensive Assumptions

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Adversarial Capabilities
® Arbitrary read-write
® Thread control

® Gadgets: switch jump table with a compiler-introduced double-fetch

Defensive Assumptions

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Adversarial Capabilities
® Arbitrary read-write
® Thread control

® Gadgets: switch jump table with a compiler-introduced double-fetch

Defensive Assumptions

® Non-Executable Memory

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Adversarial Capabilities
® Arbitrary read-write
® Thread control

® Gadgets: switch jump table with a compiler-introduced double-fetch

Defensive Assumptions
® Non-Executable Memory

® Randomization

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Adversarial Capabilities
® Arbitrary read-write
® Thread control

® Gadgets: switch jump table with a compiler-introduced double-fetch

Defensive Assumptions
® Non-Executable Memory
® Randomization

e Control Flow Protection

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Overview

© Proof of Concept

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

PoC Exploit

The victim: a complex and realistic target available for all common
operating systems

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

PoC Exploit

The victim: a complex and realistic target available for all common
operating systems

Version: 106.0.1
Built by: GCC 12.1.1

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

PoC Exploit

® Gain arbitrary read/write capability

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

PoC Exploit

® Gain arbitrary read/write capability: CVE-2022-26485

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

PoC Exploit

® Gain arbitrary read/write capability: out-of-bound that grants
arbitrary read/write capabilities through ArrayBuffers.

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

PoC Exploit

® Gain arbitrary read/write capability
® [eak ASLR bases for both libxul.so and the stack

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

PoC Exploit

® Gain arbitrary read/write capability
® | eak ASLR bases for both libxul.so and the stack
@ the address of the fetched object

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

PoC Exploit

® Gain arbitrary read/write capability
® | eak ASLR bases for both libxul.so and the stack

@ the address of the fetched object
@® the address of the victim jump table

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

PoC Exploit

® Gain arbitrary read/write capability
® | eak ASLR bases for both libxul.so and the stack

@ the address of the fetched object
@® the address of the victim jump table
© the address of one writeable memory region

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

PoC Exploit

® Gain arbitrary read/write capability
® | eak ASLR bases for both libxul.so and the stack

@ the address of the fetched object
@® the address of the victim jump table: .rodata section of 1ibxul.so
© the address of one writeable memory region

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

PoC Exploit

® Gain arbitrary read/write capability
® | eak ASLR bases for both libxul.so and the stack
@ the address of the fetched object
@® the address of the victim jump table: .rodata section of 1ibxul.so

© the address of one writeable memory region: .bss section of
libxul.so

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

PoC Exploit

® Gain arbitrary read/write capability
® | eak ASLR bases for both libxul.so and the stack
@ the address of the fetched object
@® the address of the victim jump table: .rodata section of 1ibxul.so
© the address of one writeable memory region: .bss section of
libxul.so
out-of-bound Uint8Array — leak ArrayBuffer._elements — libxul
base address — __environ — stack base address

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

PoC Exploit

® Gain arbitrary read/write capability
® | eak ASLR bases for both libxul.so and the stack
® Find double-fetch gadgets of bound-checked indirect jumps

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

PoC Exploit

® Gain arbitrary read/write capability
® | eak ASLR bases for both libxul.so and the stack

® Find double-fetch gadgets of bound-checked indirect jumps:
lightweight binary analysis tool

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

PoC Exploit

® Gain arbitrary read/write capability

® | eak ASLR bases for both libxul.so and the stack

® Find double-fetch gadgets of bound-checked indirect jumps
[]

Reaching gadget code

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

PoC Exploit

® Gain arbitrary read/write capability

® | eak ASLR bases for both libxul.so and the stack

® Find double-fetch gadgets of bound-checked indirect jumps
[]

Reaching gadget code: libxul's TraceJitActivation()

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

PoC Exploit

® Gain arbitrary read/write capability

® | eak ASLR bases for both libxul.so and the stack

® Find double-fetch gadgets of bound-checked indirect jumps
[}

Reaching gadget code: libxul's TraceJitActivation()
document .getElementById(’textarea’) .value += x

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

PoC Exploit

® Gain arbitrary read/write capability

® | eak ASLR bases for both libxul.so and the stack

® Find double-fetch gadgets of bound-checked indirect jumps
® Reaching gadget code

[}

Orchestrate the thread scheduling to win the data race

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

PoC Exploit

Gain arbitrary read/write capability
Leak ASLR bases for both libxul.so and the stack
Find double-fetch gadgets of bound-checked indirect jumps

Reaching gadget code

Orchestrate the thread scheduling to win the data race

Overwrite the checked object and hijack the control flow

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Overview

O Gadget Code Detection

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Gadget Code Detection

Binary Analysis tool

® designed for offensive purposes

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Gadget Code Detection

Binary Analysis tool
® designed for offensive purposes

® based on Radare2

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Gadget Code Detection

Binary Analysis tool
® designed for offensive purposes
® based on Radare?

® heuristics for x86/64 architectures

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Gadget Code Detection

Binary Analysis tool

® designed for offensive purposes

based on Radare2
® heuristics for x86/64 architectures

® binary pattern: combination of vulnerable elements

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Gadget Code Detection

Binary Analysis tool
® designed for offensive purposes
® based on Radare?
® heuristics for x86/64 architectures

® binary pattern: combination of vulnerable elements

) . continue
Fetch,(addr,) BoundCheck (value,) Fetch,(addr,) H Jmp[t_addr, index]
default
branch

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Overview

@ Evaluation

Marco Antonio Corallo (UniPi) WarpAttack

Intel(R) Core(TM) i7-10700 CPU (8 cores) @ 2.90GHz with 32GB of
memory and Fedora 36

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Intel(R) Core(TM) i7-10700 CPU (8 cores) @ 2.90GHz with 32GB of
memory and Fedora 36

Algorithm 1 Measuring our PoC’s success rate.

1: function EXPERIMENT

2 while 2000 times do
3 repeat > one attempt
4: attack() > run the race to overwrite
5
6
7:

until 20s have passed
end while
end function

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Intel(R) Core(TM) i7-10700 CPU (8 cores) @ 2.90GHz with 32GB of
memory and Fedora 36

TABLE 1. DIFFERENT SUCCESS RATES BY TUNING NUMBER OF CORES
AND NUMBER OF ATTACKER THREADS (IN 2000 RUNS).

#Attacker Threads
#Core 1 3 7
1 0 0 0
4 0.05% 0.25% 0.2%
8 0.15% 0.15% 045%

July 17, 2023

Marco Antonio Corallo (UniPi) WarpAttack

Real-World Impact

® Do compiler-introduced double-fetch gadgets exist in real programs?

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Real-World Impact

® Do compiler-introduced double-fetch gadgets exist in real programs?

® Which compiler is affected by such situation?

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Real-World Impact

® Do compiler-introduced double-fetch gadgets exist in real programs?
® Which compiler is affected by such situation?
® Which CFl implementation is vulnerable to WarpAttack?

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Real-World Impact

Do compiler-introduced double-fetch gadgets exist in real programs?

Which compiler is affected by such situation?
Which CFl implementation is vulnerable to WarpAttack?

What architectures are affected by WarpAttack?

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Victim Code in the Wild

TABLE 2. STATISTICS OF DOUBLE-FETCH GADGETS IN THE WILD. WE
EXCLUDED APACHE FOR MAC OS BECAUSE WE FAIL TO FIND THE
CORRECT PRE-COMPILED VERSION FOR INTEL MAC OS.

Program Fedora Debian Ubuntu Windows Mac OS

Chrome 1024 16 23 24 16
Firefox 616 659 31 0 29
Apache 15 17 16 0 -
JVM 0 0 0 0 1
7-zip 24 24 24 0 0
Texstudio 8 9 9 230 20
Total 1687 725 103 254 66

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

A Study of Compilers

TABLE 3. COMPILERS THAT CAN INTRODUCE EXPLOITABLE
DOUBLE-FETCH PAIRED TO THEIR COMPILATION OPTIONS. THE
SYMBOL “*” INDICATES CASES OBSERVED FROM REAL WORLD

PROGRAMS.
Compiler Option double-fetch Type version
GCC 01,02,03,0fast Var. 1 (fetch-fetch) 12.1
*G++ 01,02,03 Var. 2 (fetch-spill-fetch) 12.1
Clang Q0 Var. 2 (fetch-spill-fetch) 14.0.%
*Clang 01,02,03 Var. 2 (fetch-spill-fetch) 14.0.
Clang 03 Var. 1 (fetch-fetch) 14.0.
*Clang++ 03 Var. 1 (fetch-fetch) 14.0.%
MSVC od Var. 1 (fetch-fetch) 19.32.x

Marco Antonio Corallo (UniPi)

WarpAttack

July 17, 2023

Vulnerable CFl implementations

TABLE 4. CFI IMPLEMENTATIONS VULNERABLE TO OUR ATTACK.

CFI Type Compiler Vulnerable CFI
GCC VTV

Compiler-based CFI Clang LLVM.CFI
MSVC CFG

Binary only CFI - Lockdown

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Vulnerable Architectures

TABLE 5. CONFIRMED VULNERABLE ARCHITECTURES AND INVOLVED
VARIANTS AND COMPILERS.

Variant 1 (fetch-fetch)

Variant 2 (fetch-spill-fetch)

X86/-64 GCC 01/02/03
ARM 32/64 -
RISCV 32/64 -
MIPS 32/64 GCC 01/02/03

Clang O0; MSVC Od
Clang O0; MSVC Od
Clang O0

Marco Antonio Corallo (UniPi) WarpAttack

July 17, 2023

Overview

® Mitigations

Marco Antonio Corallo (UniPi) WarpAttack

Mitigations

® Avoiding Gadget code generation

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Mitigations

® Avoiding Gadget code generation: GCC's -fno-switch-tables

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Mitigations

® Avoiding Gadget code generation: GCC's -fno-switch-tables
Clang, MSVC optimization level > OO0

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Mitigations

® Avoiding Gadget code generation: GCC's -fno-switch-tables
Clang, MSVC optimization level > OO0

® Protecting Indirect Jump

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Mitigations

® Avoiding Gadget code generation: GCC's -fno-switch-tables
Clang, MSVC optimization level > OO0

® Protecting Indirect Jump: dynamic checks

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Mitigations

® Avoiding Gadget code generation: GCC's -fno-switch-tables
Clang, MSVC optimization level > OO0

® Protecting Indirect Jump: dynamic checks
® Monitoring for Attack Behavior

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Mitigations

® Avoiding Gadget code generation: GCC's ~-fno-switch-tables
Clang, MSVC optimization level > OO0

® Protecting Indirect Jump: dynamic checks

® Monitoring for Attack Behavior: spawning several threads, constantly
writing a certain memory site; crashes; ...

Marco Antonio Corallo (UniPi) WarpAttack

July 17, 2023

Mitigations

Avoiding Gadget code generation: GCC’'s -fno-switch-tables
Clang, MSVC optimization level > OO0

Protecting Indirect Jump: dynamic checks

Monitoring for Attack Behavior: spawning several threads, constantly
writing a certain memory site; crashes; ...

Making compilers aware of sensitive code

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Mitigations

® Avoiding Gadget code generation: GCC's ~-fno-switch-tables
Clang, MSVC optimization level > OO0

® Protecting Indirect Jump: dynamic checks

® Monitoring for Attack Behavior: spawning several threads, constantly
writing a certain memory site; crashes; ...

® Making compilers aware of sensitive code: annotating security-related
code

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

Based on the work of

J. Xu, L. Di Bartolomeo, F. Toffalini, B. Mao, M. Payer

Thank You.

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023

https://nebelwelt.net/files/23Oakland3.pdf

	Introduction
	Background
	Proof of Concept
	Gadget Code Detection
	Evaluation
	Mitigations

