
WarpAttack: Bypassing CFI through
Compiler-Introduced Double-Fetches

Marco Antonio Corallo

University of Pisa

Course of ICT Risk Assessment

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 1 / 26



Overview

WarpAttack exploits compiler-introduced double-fetch optimizations to
mount TOCTTOU attacks.

• Introduce the vulnerability

• Present the mechanism underlying the attack and practical PoC

• Evaluation and mitigations

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 2 / 26



Overview

WarpAttack exploits compiler-introduced double-fetch optimizations to
mount TOCTTOU attacks.

• Introduce the vulnerability

• Present the mechanism underlying the attack and practical PoC

• Evaluation and mitigations

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 2 / 26



Overview

WarpAttack exploits compiler-introduced double-fetch optimizations to
mount TOCTTOU attacks.

• Introduce the vulnerability

• Present the mechanism underlying the attack and practical PoC

• Evaluation and mitigations

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 2 / 26



Overview

WarpAttack exploits compiler-introduced double-fetch optimizations to
mount TOCTTOU attacks.

• Introduce the vulnerability

• Present the mechanism underlying the attack and practical PoC

• Evaluation and mitigations

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 2 / 26



Overview

1 Introduction

2 Background

3 Proof of Concept

4 Gadget Code Detection

5 Evaluation

6 Mitigations

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 3 / 26



Overview

1 Introduction

2 Background

3 Proof of Concept

4 Gadget Code Detection

5 Evaluation

6 Mitigations

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 4 / 26



Introduction

C/C++ software are prone to memory corruption bugs that often enable
code execution attacks.

• ASLR

• Canaries

• CFI

Not a total solution!

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 5 / 26



Introduction

C/C++ software are prone to memory corruption bugs that often enable
code execution attacks.

• ASLR

• Canaries

• CFI

Not a total solution!

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 5 / 26



Introduction

C/C++ software are prone to memory corruption bugs that often enable
code execution attacks.

• ASLR

• Canaries

• CFI

Not a total solution!

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 5 / 26



Introduction

C/C++ software are prone to memory corruption bugs that often enable
code execution attacks.

• ASLR

• Canaries

• CFI

Not a total solution!

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 5 / 26



Introduction

C/C++ software are prone to memory corruption bugs that often enable
code execution attacks.

• ASLR

• Canaries

• CFI

Not a total solution!

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 5 / 26



Introduction

Compiler-introduced double-fetch of a bound-checked indirect jump with a
jump table

30,000-foot view

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 6 / 26



Introduction

Compiler-introduced double-fetch of a bound-checked indirect jump with a
jump table

30,000-foot view

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 6 / 26



Overview

1 Introduction

2 Background

3 Proof of Concept

4 Gadget Code Detection

5 Evaluation

6 Mitigations

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 7 / 26



Double-Fetch

”Double-fetch bugs occur when a privilege system reads a variable multiple
times, but the fetched value is inconsistent due to concurrency issues”

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 8 / 26



Double-Fetch

”Double-fetch bugs occur when a privilege system reads a variable multiple
times, but the fetched value is inconsistent due to concurrency issues”

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 8 / 26



Double-Fetch

”Double-fetch bugs occur when a privilege system reads a variable multiple
times, but the fetched value is inconsistent due to concurrency issues”

• CVE-2008-2252: Windows
• CVE-2005-2490: Linux kernel
• CVE-2015-1420: Linux kernel (Android)
• CVE-2022-48357: Huawei products

:

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 9 / 26



Bound-Checked Jump Table

The code for a jump table lookup consists of

• a bound check;

• an indirect jump (whose address is computed with the checked value).

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 10 / 26



Assumptions

Adversarial Capabilities

• Arbitrary read-write

• Thread control

• Gadgets: switch jump table with a compiler-introduced double-fetch

Defensive Assumptions

• Non-Executable Memory

• Randomization

• Control Flow Protection

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 11 / 26



Assumptions

Adversarial Capabilities

• Arbitrary read-write

• Thread control

• Gadgets: switch jump table with a compiler-introduced double-fetch

Defensive Assumptions

• Non-Executable Memory

• Randomization

• Control Flow Protection

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 11 / 26



Assumptions

Adversarial Capabilities

• Arbitrary read-write

• Thread control

• Gadgets: switch jump table with a compiler-introduced double-fetch

Defensive Assumptions

• Non-Executable Memory

• Randomization

• Control Flow Protection

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 11 / 26



Assumptions

Adversarial Capabilities

• Arbitrary read-write

• Thread control

• Gadgets: switch jump table with a compiler-introduced double-fetch

Defensive Assumptions

• Non-Executable Memory

• Randomization

• Control Flow Protection

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 11 / 26



Assumptions

Adversarial Capabilities

• Arbitrary read-write

• Thread control

• Gadgets: switch jump table with a compiler-introduced double-fetch

Defensive Assumptions

• Non-Executable Memory

• Randomization

• Control Flow Protection

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 11 / 26



Assumptions

Adversarial Capabilities

• Arbitrary read-write

• Thread control

• Gadgets: switch jump table with a compiler-introduced double-fetch

Defensive Assumptions

• Non-Executable Memory

• Randomization

• Control Flow Protection

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 11 / 26



Overview

1 Introduction

2 Background

3 Proof of Concept

4 Gadget Code Detection

5 Evaluation

6 Mitigations

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 12 / 26



PoC Exploit

The victim: a complex and realistic target available for all common
operating systems

Version: 106.0.1
Built by: GCC 12.1.1

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 13 / 26



PoC Exploit

The victim: a complex and realistic target available for all common
operating systems

Version: 106.0.1
Built by: GCC 12.1.1

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 13 / 26



PoC Exploit

• Gain arbitrary read/write capability

• Leak ASLR bases for both libxul.so and the stack

• Find double-fetch gadgets of bound-checked indirect jumps

• Reaching gadget code

• Orchestrate the thread scheduling to win the data race

• Overwrite the checked object and hijack the control flow

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 14 / 26



PoC Exploit

• Gain arbitrary read/write capability: CVE-2022-26485

• Leak ASLR bases for both libxul.so and the stack

• Find double-fetch gadgets of bound-checked indirect jumps

• Reaching gadget code

• Orchestrate the thread scheduling to win the data race

• Overwrite the checked object and hijack the control flow

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 14 / 26



PoC Exploit

• Gain arbitrary read/write capability: out-of-bound that grants
arbitrary read/write capabilities through ArrayBuffers.

• Leak ASLR bases for both libxul.so and the stack

• Find double-fetch gadgets of bound-checked indirect jumps

• Reaching gadget code

• Orchestrate the thread scheduling to win the data race

• Overwrite the checked object and hijack the control flow

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 14 / 26



PoC Exploit

• Gain arbitrary read/write capability

• Leak ASLR bases for both libxul.so and the stack

• Find double-fetch gadgets of bound-checked indirect jumps

• Reaching gadget code

• Orchestrate the thread scheduling to win the data race

• Overwrite the checked object and hijack the control flow

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 14 / 26



PoC Exploit

• Gain arbitrary read/write capability
• Leak ASLR bases for both libxul.so and the stack

1 the address of the fetched object

2 the address of the victim jump table
3 the address of one writeable memory region

• Find double-fetch gadgets of bound-checked indirect jumps

• Reaching gadget code

• Orchestrate the thread scheduling to win the data race

• Overwrite the checked object and hijack the control flow

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 14 / 26



PoC Exploit

• Gain arbitrary read/write capability
• Leak ASLR bases for both libxul.so and the stack

1 the address of the fetched object
2 the address of the victim jump table

3 the address of one writeable memory region

• Find double-fetch gadgets of bound-checked indirect jumps

• Reaching gadget code

• Orchestrate the thread scheduling to win the data race

• Overwrite the checked object and hijack the control flow

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 14 / 26



PoC Exploit

• Gain arbitrary read/write capability
• Leak ASLR bases for both libxul.so and the stack

1 the address of the fetched object
2 the address of the victim jump table
3 the address of one writeable memory region

• Find double-fetch gadgets of bound-checked indirect jumps

• Reaching gadget code

• Orchestrate the thread scheduling to win the data race

• Overwrite the checked object and hijack the control flow

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 14 / 26



PoC Exploit

• Gain arbitrary read/write capability
• Leak ASLR bases for both libxul.so and the stack

1 the address of the fetched object
2 the address of the victim jump table: .rodata section of libxul.so
3 the address of one writeable memory region

• Find double-fetch gadgets of bound-checked indirect jumps

• Reaching gadget code

• Orchestrate the thread scheduling to win the data race

• Overwrite the checked object and hijack the control flow

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 14 / 26



PoC Exploit

• Gain arbitrary read/write capability
• Leak ASLR bases for both libxul.so and the stack

1 the address of the fetched object
2 the address of the victim jump table: .rodata section of libxul.so
3 the address of one writeable memory region: .bss section of

libxul.so

• Find double-fetch gadgets of bound-checked indirect jumps

• Reaching gadget code

• Orchestrate the thread scheduling to win the data race

• Overwrite the checked object and hijack the control flow

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 14 / 26



PoC Exploit

• Gain arbitrary read/write capability
• Leak ASLR bases for both libxul.so and the stack

1 the address of the fetched object
2 the address of the victim jump table: .rodata section of libxul.so
3 the address of one writeable memory region: .bss section of

libxul.so

out-of-bound Uint8Array → leak ArrayBuffer. elements → libxul
base address → environ → stack base address

• Find double-fetch gadgets of bound-checked indirect jumps

• Reaching gadget code

• Orchestrate the thread scheduling to win the data race

• Overwrite the checked object and hijack the control flow

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 14 / 26



PoC Exploit

• Gain arbitrary read/write capability

• Leak ASLR bases for both libxul.so and the stack

• Find double-fetch gadgets of bound-checked indirect jumps

• Reaching gadget code

• Orchestrate the thread scheduling to win the data race

• Overwrite the checked object and hijack the control flow

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 14 / 26



PoC Exploit

• Gain arbitrary read/write capability

• Leak ASLR bases for both libxul.so and the stack

• Find double-fetch gadgets of bound-checked indirect jumps:
lightweight binary analysis tool

• Reaching gadget code

• Orchestrate the thread scheduling to win the data race

• Overwrite the checked object and hijack the control flow

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 14 / 26



PoC Exploit

• Gain arbitrary read/write capability

• Leak ASLR bases for both libxul.so and the stack

• Find double-fetch gadgets of bound-checked indirect jumps

• Reaching gadget code

• Orchestrate the thread scheduling to win the data race

• Overwrite the checked object and hijack the control flow

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 14 / 26



PoC Exploit

• Gain arbitrary read/write capability

• Leak ASLR bases for both libxul.so and the stack

• Find double-fetch gadgets of bound-checked indirect jumps

• Reaching gadget code: libxul’s TraceJitActivation()

• Orchestrate the thread scheduling to win the data race

• Overwrite the checked object and hijack the control flow

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 14 / 26



PoC Exploit

• Gain arbitrary read/write capability

• Leak ASLR bases for both libxul.so and the stack

• Find double-fetch gadgets of bound-checked indirect jumps

• Reaching gadget code: libxul’s TraceJitActivation()
document.getElementById(’textarea’).value += x

• Orchestrate the thread scheduling to win the data race

• Overwrite the checked object and hijack the control flow

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 14 / 26



PoC Exploit

• Gain arbitrary read/write capability

• Leak ASLR bases for both libxul.so and the stack

• Find double-fetch gadgets of bound-checked indirect jumps

• Reaching gadget code

• Orchestrate the thread scheduling to win the data race

• Overwrite the checked object and hijack the control flow

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 14 / 26



PoC Exploit

• Gain arbitrary read/write capability

• Leak ASLR bases for both libxul.so and the stack

• Find double-fetch gadgets of bound-checked indirect jumps

• Reaching gadget code

• Orchestrate the thread scheduling to win the data race

• Overwrite the checked object and hijack the control flow

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 14 / 26



Overview

1 Introduction

2 Background

3 Proof of Concept

4 Gadget Code Detection

5 Evaluation

6 Mitigations

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 15 / 26



Gadget Code Detection

Binary Analysis tool

• designed for offensive purposes

• based on Radare2

• heuristics for x86/64 architectures

• binary pattern: combination of vulnerable elements

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 16 / 26



Gadget Code Detection

Binary Analysis tool

• designed for offensive purposes

• based on Radare2

• heuristics for x86/64 architectures

• binary pattern: combination of vulnerable elements

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 16 / 26



Gadget Code Detection

Binary Analysis tool

• designed for offensive purposes

• based on Radare2

• heuristics for x86/64 architectures

• binary pattern: combination of vulnerable elements

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 16 / 26



Gadget Code Detection

Binary Analysis tool

• designed for offensive purposes

• based on Radare2

• heuristics for x86/64 architectures

• binary pattern: combination of vulnerable elements

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 16 / 26



Gadget Code Detection

Binary Analysis tool

• designed for offensive purposes

• based on Radare2

• heuristics for x86/64 architectures

• binary pattern: combination of vulnerable elements

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 16 / 26



Overview

1 Introduction

2 Background

3 Proof of Concept

4 Gadget Code Detection

5 Evaluation

6 Mitigations

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 17 / 26



Benchmarks

Intel(R) Core(TM) i7-10700 CPU (8 cores) @ 2.90GHz with 32GB of
memory and Fedora 36

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 18 / 26



Benchmarks

Intel(R) Core(TM) i7-10700 CPU (8 cores) @ 2.90GHz with 32GB of
memory and Fedora 36

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 18 / 26



Benchmarks

Intel(R) Core(TM) i7-10700 CPU (8 cores) @ 2.90GHz with 32GB of
memory and Fedora 36

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 18 / 26



Real-World Impact

• Do compiler-introduced double-fetch gadgets exist in real programs?

• Which compiler is affected by such situation?

• Which CFI implementation is vulnerable to WarpAttack?

• What architectures are affected by WarpAttack?

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 19 / 26



Real-World Impact

• Do compiler-introduced double-fetch gadgets exist in real programs?

• Which compiler is affected by such situation?

• Which CFI implementation is vulnerable to WarpAttack?

• What architectures are affected by WarpAttack?

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 19 / 26



Real-World Impact

• Do compiler-introduced double-fetch gadgets exist in real programs?

• Which compiler is affected by such situation?

• Which CFI implementation is vulnerable to WarpAttack?

• What architectures are affected by WarpAttack?

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 19 / 26



Real-World Impact

• Do compiler-introduced double-fetch gadgets exist in real programs?

• Which compiler is affected by such situation?

• Which CFI implementation is vulnerable to WarpAttack?

• What architectures are affected by WarpAttack?

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 19 / 26



Victim Code in the Wild

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 20 / 26



A Study of Compilers

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 21 / 26



Vulnerable CFI implementations

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 22 / 26



Vulnerable Architectures

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 23 / 26



Overview

1 Introduction

2 Background

3 Proof of Concept

4 Gadget Code Detection

5 Evaluation

6 Mitigations

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 24 / 26



Mitigations

• Avoiding Gadget code generation

• Protecting Indirect Jump

• Monitoring for Attack Behavior

• Making compilers aware of sensitive code

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 25 / 26



Mitigations

• Avoiding Gadget code generation: GCC’s -fno-switch-tables

• Protecting Indirect Jump

• Monitoring for Attack Behavior

• Making compilers aware of sensitive code

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 25 / 26



Mitigations

• Avoiding Gadget code generation: GCC’s -fno-switch-tables
Clang, MSVC optimization level > O0

• Protecting Indirect Jump

• Monitoring for Attack Behavior

• Making compilers aware of sensitive code

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 25 / 26



Mitigations

• Avoiding Gadget code generation: GCC’s -fno-switch-tables
Clang, MSVC optimization level > O0

• Protecting Indirect Jump

• Monitoring for Attack Behavior

• Making compilers aware of sensitive code

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 25 / 26



Mitigations

• Avoiding Gadget code generation: GCC’s -fno-switch-tables
Clang, MSVC optimization level > O0

• Protecting Indirect Jump: dynamic checks

• Monitoring for Attack Behavior

• Making compilers aware of sensitive code

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 25 / 26



Mitigations

• Avoiding Gadget code generation: GCC’s -fno-switch-tables
Clang, MSVC optimization level > O0

• Protecting Indirect Jump: dynamic checks

• Monitoring for Attack Behavior

• Making compilers aware of sensitive code

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 25 / 26



Mitigations

• Avoiding Gadget code generation: GCC’s -fno-switch-tables
Clang, MSVC optimization level > O0

• Protecting Indirect Jump: dynamic checks

• Monitoring for Attack Behavior: spawning several threads, constantly
writing a certain memory site; crashes; ...

• Making compilers aware of sensitive code

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 25 / 26



Mitigations

• Avoiding Gadget code generation: GCC’s -fno-switch-tables
Clang, MSVC optimization level > O0

• Protecting Indirect Jump: dynamic checks

• Monitoring for Attack Behavior: spawning several threads, constantly
writing a certain memory site; crashes; ...

• Making compilers aware of sensitive code

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 25 / 26



Mitigations

• Avoiding Gadget code generation: GCC’s -fno-switch-tables
Clang, MSVC optimization level > O0

• Protecting Indirect Jump: dynamic checks

• Monitoring for Attack Behavior: spawning several threads, constantly
writing a certain memory site; crashes; ...

• Making compilers aware of sensitive code: annotating security-related
code

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 25 / 26



Based on the work of

J. Xu, L. Di Bartolomeo, F. Toffalini, B. Mao, M. Payer

Thank You.

Marco Antonio Corallo (UniPi) WarpAttack July 17, 2023 26 / 26

https://nebelwelt.net/files/23Oakland3.pdf

	Introduction
	Background
	Proof of Concept
	Gadget Code Detection
	Evaluation
	Mitigations

