
Detecting Cross-language Memory Management Issues
in Rust

Marco Antonio Corallo

University of Pisa

Course of Languages, Compilers and Interpreters

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 1 / 35



Overview

1 Introduction

2 Background

3 Security and Memory Management Issues via FFI

4 Abstract Interpretation

5 Algorithms

6 Evaluation and Conclusion

7 Conclusion

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 2 / 35



Overview

1 Introduction

2 Background

3 Security and Memory Management Issues via FFI

4 Abstract Interpretation

5 Algorithms

6 Evaluation and Conclusion

7 Conclusion

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 3 / 35



Introduction

Rust is a promising system-level programming language that can prevent
memory corruption bugs using its strong type system and ownership-based
memory management scheme. In practice, programmers usually write Rust
code in conjunction with other languages such as C/C++ through Foreign
Function Interface (FFI).

• Firefox

• Google Fuchsia OS

• Linux Kernel.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 4 / 35



Introduction

Rust is a promising system-level programming language that can prevent
memory corruption bugs using its strong type system and ownership-based
memory management scheme. In practice, programmers usually write Rust
code in conjunction with other languages such as C/C++ through Foreign
Function Interface (FFI).

• Firefox

• Google Fuchsia OS

• Linux Kernel.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 4 / 35



Introduction

Rust is a promising system-level programming language that can prevent
memory corruption bugs using its strong type system and ownership-based
memory management scheme. In practice, programmers usually write Rust
code in conjunction with other languages such as C/C++ through Foreign
Function Interface (FFI).

• Firefox

• Google Fuchsia OS

• Linux Kernel.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 4 / 35



Introduction

Rust is a promising system-level programming language that can prevent
memory corruption bugs using its strong type system and ownership-based
memory management scheme. In practice, programmers usually write Rust
code in conjunction with other languages such as C/C++ through Foreign
Function Interface (FFI).

• Firefox

• Google Fuchsia OS

• Linux Kernel.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 4 / 35



Introduction

Although it is widely believed that gradually re-implementing
security-critical components in Rust is a way of enhancing software
security, however, using FFI is inherently unsafe.

• Programmers may accidentally misuse the unsafe abilities that lead to
vulnerabilities.

• Different assumptions made by different languages make it possible
for attackers to maneuver between the FFI boundaries and exploit
these vulnerabilities

• Even for Rust packages written in pure safe Rust, they may still be
affected because they may depend on other packages that include FFI.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 5 / 35



Introduction

Although it is widely believed that gradually re-implementing
security-critical components in Rust is a way of enhancing software
security, however, using FFI is inherently unsafe.

• Programmers may accidentally misuse the unsafe abilities that lead to
vulnerabilities.

• Different assumptions made by different languages make it possible
for attackers to maneuver between the FFI boundaries and exploit
these vulnerabilities

• Even for Rust packages written in pure safe Rust, they may still be
affected because they may depend on other packages that include FFI.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 5 / 35



Introduction

Although it is widely believed that gradually re-implementing
security-critical components in Rust is a way of enhancing software
security, however, using FFI is inherently unsafe.

• Programmers may accidentally misuse the unsafe abilities that lead to
vulnerabilities.

• Different assumptions made by different languages make it possible
for attackers to maneuver between the FFI boundaries and exploit
these vulnerabilities

• Even for Rust packages written in pure safe Rust, they may still be
affected because they may depend on other packages that include FFI.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 5 / 35



Introduction

Although it is widely believed that gradually re-implementing
security-critical components in Rust is a way of enhancing software
security, however, using FFI is inherently unsafe.

• Programmers may accidentally misuse the unsafe abilities that lead to
vulnerabilities.

• Different assumptions made by different languages make it possible
for attackers to maneuver between the FFI boundaries and exploit
these vulnerabilities

• Even for Rust packages written in pure safe Rust, they may still be
affected because they may depend on other packages that include FFI.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 5 / 35



Introduction

Therefore excluding FFI is unrealistic in the current Rust ecosystem;

Instead, people have made lots of efforts to secure the use of FFI.

• Some Rust packages to automatically generate FFI, preventing
developers from misusing it.

• Rust community has drafted several guidelines for writing unsafe
code, including FFI.

However, they can only help developers to write correct interfaces with
appropriate data types.
Memory corruption caused by heap memory allocation/deallocation across
the FFI boundaries remains an open problem.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 6 / 35



Introduction

Therefore excluding FFI is unrealistic in the current Rust ecosystem;

Instead, people have made lots of efforts to secure the use of FFI.

• Some Rust packages to automatically generate FFI, preventing
developers from misusing it.

• Rust community has drafted several guidelines for writing unsafe
code, including FFI.

However, they can only help developers to write correct interfaces with
appropriate data types.
Memory corruption caused by heap memory allocation/deallocation across
the FFI boundaries remains an open problem.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 6 / 35



Introduction

Therefore excluding FFI is unrealistic in the current Rust ecosystem;

Instead, people have made lots of efforts to secure the use of FFI.

• Some Rust packages to automatically generate FFI, preventing
developers from misusing it.

• Rust community has drafted several guidelines for writing unsafe
code, including FFI.

However, they can only help developers to write correct interfaces with
appropriate data types.
Memory corruption caused by heap memory allocation/deallocation across
the FFI boundaries remains an open problem.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 6 / 35



Introduction

Therefore excluding FFI is unrealistic in the current Rust ecosystem;

Instead, people have made lots of efforts to secure the use of FFI.

• Some Rust packages to automatically generate FFI, preventing
developers from misusing it.

• Rust community has drafted several guidelines for writing unsafe
code, including FFI.

However, they can only help developers to write correct interfaces with
appropriate data types.
Memory corruption caused by heap memory allocation/deallocation across
the FFI boundaries remains an open problem.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 6 / 35



Introduction

Idea: Use static analysis techniques to to keep track of the states of heap
memory, that is, while the heap memory is propagated among the control
flow graph, we determine whether it is borrowed or moved.

Finally, if any heap memory is passed across the FFI boundaries, we
continue to analyze whether it is freed in the external code.

Development of a tool called FFIChecker, which automatically collects all
the generated LLVM intermediate representation (IR) for both Rust and
C/C++ code, then performs static analysis on the LLVM IR and outputs
diagnostic reports.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 7 / 35



Introduction

Idea: Use static analysis techniques to to keep track of the states of heap
memory, that is, while the heap memory is propagated among the control
flow graph, we determine whether it is borrowed or moved.

Finally, if any heap memory is passed across the FFI boundaries, we
continue to analyze whether it is freed in the external code.

Development of a tool called FFIChecker, which automatically collects all
the generated LLVM intermediate representation (IR) for both Rust and
C/C++ code, then performs static analysis on the LLVM IR and outputs
diagnostic reports.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 7 / 35



Introduction

Idea: Use static analysis techniques to to keep track of the states of heap
memory, that is, while the heap memory is propagated among the control
flow graph, we determine whether it is borrowed or moved.

Finally, if any heap memory is passed across the FFI boundaries, we
continue to analyze whether it is freed in the external code.

Development of a tool called FFIChecker, which automatically collects all
the generated LLVM intermediate representation (IR) for both Rust and
C/C++ code, then performs static analysis on the LLVM IR and outputs
diagnostic reports.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 7 / 35



Overview

1 Introduction

2 Background

3 Security and Memory Management Issues via FFI

4 Abstract Interpretation

5 Algorithms

6 Evaluation and Conclusion

7 Conclusion

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 8 / 35



Rust

A strongly-typed compiled language, with a rigorous type system and an
unique and innovative ownership system derived from linear logic and
linear types.

Each value has a unique owner (owner variable), which keeps track of the
lifetime of the value. Once the owner variable goes out of its scope, the
ownership system automatically releases the memory allocated for the
value.

To pass a value to other parts of code, one can either

• copy/clone the owner variable

• move the owner variable
• borrow the owner variable

• mutable
• immutable

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 9 / 35



Rust

A strongly-typed compiled language, with a rigorous type system and an
unique and innovative ownership system derived from linear logic and
linear types.

Each value has a unique owner (owner variable), which keeps track of the
lifetime of the value. Once the owner variable goes out of its scope, the
ownership system automatically releases the memory allocated for the
value.

To pass a value to other parts of code, one can either

• copy/clone the owner variable

• move the owner variable

• borrow the owner variable
• mutable
• immutable

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 9 / 35



Rust

A strongly-typed compiled language, with a rigorous type system and an
unique and innovative ownership system derived from linear logic and
linear types.

Each value has a unique owner (owner variable), which keeps track of the
lifetime of the value. Once the owner variable goes out of its scope, the
ownership system automatically releases the memory allocated for the
value.

To pass a value to other parts of code, one can either

• copy/clone the owner variable

• move the owner variable
• borrow the owner variable

• mutable
• immutable

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 9 / 35



Rust

A strongly-typed compiled language, with a rigorous type system and an
unique and innovative ownership system derived from linear logic and
linear types.

Each value has a unique owner (owner variable), which keeps track of the
lifetime of the value. Once the owner variable goes out of its scope, the
ownership system automatically releases the memory allocated for the
value.

To pass a value to other parts of code, one can either

• copy/clone the owner variable

• move the owner variable
• borrow the owner variable

• mutable
• immutable

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 9 / 35



Rust

A strongly-typed compiled language, with a rigorous type system and an
unique and innovative ownership system derived from linear logic and
linear types.

Each value has a unique owner (owner variable), which keeps track of the
lifetime of the value. Once the owner variable goes out of its scope, the
ownership system automatically releases the memory allocated for the
value.

To pass a value to other parts of code, one can either

• copy/clone the owner variable

• move the owner variable

• borrow the owner variable
• mutable
• immutable

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 9 / 35



Rust

A strongly-typed compiled language, with a rigorous type system and an
unique and innovative ownership system derived from linear logic and
linear types.

Each value has a unique owner (owner variable), which keeps track of the
lifetime of the value. Once the owner variable goes out of its scope, the
ownership system automatically releases the memory allocated for the
value.

To pass a value to other parts of code, one can either

• copy/clone the owner variable

• move the owner variable
• borrow the owner variable

• mutable
• immutable

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 9 / 35



Rust

A strongly-typed compiled language, with a rigorous type system and an
unique and innovative ownership system derived from linear logic and
linear types.

Each value has a unique owner (owner variable), which keeps track of the
lifetime of the value. Once the owner variable goes out of its scope, the
ownership system automatically releases the memory allocated for the
value.

To pass a value to other parts of code, one can either

• copy/clone the owner variable

• move the owner variable
• borrow the owner variable

• mutable
• immutable

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 9 / 35



FFI

As a system-level programming language, Rust can easily collaborate with
other languages through the Foreign Function Interface (FFI ).

Integrating Rust code with C/C++ code is prevalent and necessary

• Many C/C++ projects integrate Rust into existing code-bases to
enhance their security.

• It can avoid duplicated work and benefit from the rich ecosystem of
libraries written in C/C++.

• C/C++ can be used for performance-critical scenarios

Since the Rust compiler cannot reason about the security of external code,
calling FFI is inherently unsafe.
Programmers need to explicitly use the unsafe keyword to bypass the
security check enforced by the compiler.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 10 / 35



FFI

As a system-level programming language, Rust can easily collaborate with
other languages through the Foreign Function Interface (FFI ).

Integrating Rust code with C/C++ code is prevalent and necessary

• Many C/C++ projects integrate Rust into existing code-bases to
enhance their security.

• It can avoid duplicated work and benefit from the rich ecosystem of
libraries written in C/C++.

• C/C++ can be used for performance-critical scenarios

Since the Rust compiler cannot reason about the security of external code,
calling FFI is inherently unsafe.
Programmers need to explicitly use the unsafe keyword to bypass the
security check enforced by the compiler.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 10 / 35



FFI

As a system-level programming language, Rust can easily collaborate with
other languages through the Foreign Function Interface (FFI ).

Integrating Rust code with C/C++ code is prevalent and necessary

• Many C/C++ projects integrate Rust into existing code-bases to
enhance their security.

• It can avoid duplicated work and benefit from the rich ecosystem of
libraries written in C/C++.

• C/C++ can be used for performance-critical scenarios

Since the Rust compiler cannot reason about the security of external code,
calling FFI is inherently unsafe.
Programmers need to explicitly use the unsafe keyword to bypass the
security check enforced by the compiler.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 10 / 35



FFI

As a system-level programming language, Rust can easily collaborate with
other languages through the Foreign Function Interface (FFI ).

Integrating Rust code with C/C++ code is prevalent and necessary

• Many C/C++ projects integrate Rust into existing code-bases to
enhance their security.

• It can avoid duplicated work and benefit from the rich ecosystem of
libraries written in C/C++.

• C/C++ can be used for performance-critical scenarios

Since the Rust compiler cannot reason about the security of external code,
calling FFI is inherently unsafe.
Programmers need to explicitly use the unsafe keyword to bypass the
security check enforced by the compiler.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 10 / 35



FFI

As a system-level programming language, Rust can easily collaborate with
other languages through the Foreign Function Interface (FFI ).

Integrating Rust code with C/C++ code is prevalent and necessary

• Many C/C++ projects integrate Rust into existing code-bases to
enhance their security.

• It can avoid duplicated work and benefit from the rich ecosystem of
libraries written in C/C++.

• C/C++ can be used for performance-critical scenarios

Since the Rust compiler cannot reason about the security of external code,
calling FFI is inherently unsafe.
Programmers need to explicitly use the unsafe keyword to bypass the
security check enforced by the compiler.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 10 / 35



FFI

As a system-level programming language, Rust can easily collaborate with
other languages through the Foreign Function Interface (FFI ).

Integrating Rust code with C/C++ code is prevalent and necessary

• Many C/C++ projects integrate Rust into existing code-bases to
enhance their security.

• It can avoid duplicated work and benefit from the rich ecosystem of
libraries written in C/C++.

• C/C++ can be used for performance-critical scenarios

Since the Rust compiler cannot reason about the security of external code,
calling FFI is inherently unsafe.
Programmers need to explicitly use the unsafe keyword to bypass the
security check enforced by the compiler.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 10 / 35



FFI

The incorrect use of the FFI has become a severe source of memory safety
bugs. Even if programmers restrict themselves in pure safe Rust, their
programs may still implicitly rely on FFI through dependencies.
In fact, more than 72% of packages on the official Rust package registry
depend on at least one unsafe FFI-bindings package.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 11 / 35



FFI

The manual memory management in C/C++ is naively unsafe, so we only
consider the case where the heap memory is allocated in Rust and passed
to C/C++.
There are two ways of passing a heap-allocated object across FFI:

• By borrowing the object as a reference

the ownership remains on the Rust side, so the ownership system is
responsible for releasing the memory after it goes out of its scope.

• By moving the ownership to the FFI
one can first forget it from the ownership system, then pass it to the
FFI via a raw pointer.
The responsibility of memory management returns back to the
programmers.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 12 / 35



FFI

The manual memory management in C/C++ is naively unsafe, so we only
consider the case where the heap memory is allocated in Rust and passed
to C/C++.
There are two ways of passing a heap-allocated object across FFI:

• By borrowing the object as a reference
the ownership remains on the Rust side, so the ownership system is
responsible for releasing the memory after it goes out of its scope.

• By moving the ownership to the FFI
one can first forget it from the ownership system, then pass it to the
FFI via a raw pointer.
The responsibility of memory management returns back to the
programmers.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 12 / 35



FFI

The manual memory management in C/C++ is naively unsafe, so we only
consider the case where the heap memory is allocated in Rust and passed
to C/C++.
There are two ways of passing a heap-allocated object across FFI:

• By borrowing the object as a reference
the ownership remains on the Rust side, so the ownership system is
responsible for releasing the memory after it goes out of its scope.

• By moving the ownership to the FFI

one can first forget it from the ownership system, then pass it to the
FFI via a raw pointer.
The responsibility of memory management returns back to the
programmers.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 12 / 35



FFI

The manual memory management in C/C++ is naively unsafe, so we only
consider the case where the heap memory is allocated in Rust and passed
to C/C++.
There are two ways of passing a heap-allocated object across FFI:

• By borrowing the object as a reference
the ownership remains on the Rust side, so the ownership system is
responsible for releasing the memory after it goes out of its scope.

• By moving the ownership to the FFI
one can first forget it from the ownership system, then pass it to the
FFI via a raw pointer.
The responsibility of memory management returns back to the
programmers.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 12 / 35



Overview

1 Introduction

2 Background

3 Security and Memory Management Issues via FFI

4 Abstract Interpretation

5 Algorithms

6 Evaluation and Conclusion

7 Conclusion

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 13 / 35



Security and Memory Management Issues via FFI

To explain why the memory management across the FFI boundaries may
lead to security vulnerabilities and how the Rust ownership system gets
involved, we give several bug examples detected by FFIChecker

• Common Memory Corruption

• Exception Safety

• Undefined Behaviour caused by Mixing Memory Management
Mechanisms

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 14 / 35



Security and Memory Management Issues via FFI

To explain why the memory management across the FFI boundaries may
lead to security vulnerabilities and how the Rust ownership system gets
involved, we give several bug examples detected by FFIChecker

• Common Memory Corruption

• Exception Safety

• Undefined Behaviour caused by Mixing Memory Management
Mechanisms

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 14 / 35



Security and Memory Management Issues via FFI

To explain why the memory management across the FFI boundaries may
lead to security vulnerabilities and how the Rust ownership system gets
involved, we give several bug examples detected by FFIChecker

• Common Memory Corruption

• Exception Safety

• Undefined Behaviour caused by Mixing Memory Management
Mechanisms

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 14 / 35



Security and Memory Management Issues via FFI

To explain why the memory management across the FFI boundaries may
lead to security vulnerabilities and how the Rust ownership system gets
involved, we give several bug examples detected by FFIChecker

• Common Memory Corruption

• Exception Safety

• Undefined Behaviour caused by Mixing Memory Management
Mechanisms

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 14 / 35



Memory Corruption

When heap memory is passed across the FFI boundaries, the ownership
system cannot guarantee its safety. Therefore the responsibility of memory
management returns back to the programmers, meaning that all kinds of
common memory corruption bugs that happen in C, like use-after-free,
double free, and memory leak, still exist.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 15 / 35



Memory Corruption

• Box is a smart pointer used to securely manage heap memory.

• Box::into raw expose the raw pointer of the heap memory managed
by the Box in order to pass it to the FFI. The ownership system will
forget the memory and will not reclaim it.
The developer is responsible for releasing the memory.
Otherwise, there will be a memory leak.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 16 / 35



Memory Corruption

• Box is a smart pointer used to securely manage heap memory.

• Box::into raw expose the raw pointer of the heap memory managed
by the Box in order to pass it to the FFI. The ownership system will
forget the memory and will not reclaim it.
The developer is responsible for releasing the memory.
Otherwise, there will be a memory leak.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 16 / 35



Memory Corruption

• Box is a smart pointer used to securely manage heap memory.

• Box::into raw expose the raw pointer of the heap memory managed
by the Box in order to pass it to the FFI. The ownership system will
forget the memory and will not reclaim it.
The developer is responsible for releasing the memory.
Otherwise, there will be a memory leak.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 16 / 35



Exception Safety

Rust does not support the try-catch statement for catching exceptions.
Instead, Rust provides a more reliable error handling mechanism: all
recoverable errors must be handled or propagated back to the caller
function, and all unrecoverable errors are handled by terminating the
execution and unwinding the stack.
All the stack objects’ destructors will be called during the stack unwinding
to prevent resource leakage.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 17 / 35



Exception Safety

When cooperating with external code, developers usually have to
transiently create unsound states via unsafe code . Then after the external
code finishes, developers manually clean up the states. If some error
happens in between, the execution stops and the stack is unwound, so the
clean-up procedure will not be executed. The remaining unsound state
may cause security issues.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 18 / 35



Exception Safety

• line 2: variable params is initialized by allocating heap memory.

• line 3-8: memory is passed to FFI in the unsafe block.

• line 5 and line 7: the ? means that if the operation fails, the function
returns early and propagates the error to the caller.

• the memory may be leaked if the function returns early
and the free at line 10 will not be called.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 19 / 35



Exception Safety

• line 2: variable params is initialized by allocating heap memory.

• line 3-8: memory is passed to FFI in the unsafe block.

• line 5 and line 7: the ? means that if the operation fails, the function
returns early and propagates the error to the caller.

• the memory may be leaked if the function returns early
and the free at line 10 will not be called.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 19 / 35



Exception Safety

• line 2: variable params is initialized by allocating heap memory.

• line 3-8: memory is passed to FFI in the unsafe block.

• line 5 and line 7: the ? means that if the operation fails, the function
returns early and propagates the error to the caller.

• the memory may be leaked if the function returns early
and the free at line 10 will not be called.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 19 / 35



Exception Safety

• line 2: variable params is initialized by allocating heap memory.

• line 3-8: memory is passed to FFI in the unsafe block.

• line 5 and line 7: the ? means that if the operation fails, the function
returns early and propagates the error to the caller.

• the memory may be leaked if the function returns early
and the free at line 10 will not be called.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 19 / 35



Mixing Memory Management Mechanisms

One possible error is mixing different memory allocation/deallocation
procedures provided by different languages.
For example, it is illegal to allocate memory on the Rust-side using Box

and release it on the C-side using free.

Mixing different memory management mechanisms is undefined behavior

• Rust and C may use different memory allocators

• Rust and C have totally different memory management mechanisms
and they operate on different levels.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 20 / 35



Mixing Memory Management Mechanisms

One possible error is mixing different memory allocation/deallocation
procedures provided by different languages.
For example, it is illegal to allocate memory on the Rust-side using Box

and release it on the C-side using free.
Mixing different memory management mechanisms is undefined behavior

• Rust and C may use different memory allocators

• Rust and C have totally different memory management mechanisms
and they operate on different levels.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 20 / 35



Mixing Memory Management Mechanisms

One possible error is mixing different memory allocation/deallocation
procedures provided by different languages.
For example, it is illegal to allocate memory on the Rust-side using Box

and release it on the C-side using free.
Mixing different memory management mechanisms is undefined behavior

• Rust and C may use different memory allocators

• Rust and C have totally different memory management mechanisms
and they operate on different levels.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 20 / 35



Mixing Memory Management Mechanisms

• line 5: a string is constructed through CString::new, which uses
Rust’s memory allocator for heap.

• line 7-8: the string is explicitly leaked by mem::forget and a raw
pointer is returned.

• line 16: the heap memory is freed by C’s free.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 21 / 35



Mixing Memory Management Mechanisms

• line 5: a string is constructed through CString::new, which uses
Rust’s memory allocator for heap.

• line 7-8: the string is explicitly leaked by mem::forget and a raw
pointer is returned.

• line 16: the heap memory is freed by C’s free.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 21 / 35



Mixing Memory Management Mechanisms

• line 5: a string is constructed through CString::new, which uses
Rust’s memory allocator for heap.

• line 7-8: the string is explicitly leaked by mem::forget and a raw
pointer is returned.

• line 16: the heap memory is freed by C’s free.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 21 / 35



Overview

1 Introduction

2 Background

3 Security and Memory Management Issues via FFI

4 Abstract Interpretation

5 Algorithms

6 Evaluation and Conclusion

7 Conclusion

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 22 / 35



Abstract Values

Let Var as the set of all the variables in the CFG
and Block as the set of all basic blocks in the CFG.

Let MState as the lattice

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 23 / 35



Abstract Values

Let Var as the set of all the variables in the CFG
and Block as the set of all basic blocks in the CFG.

Let MState as the lattice

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 23 / 35



Abstract Domain

To keep track of the abstract values for each basic block, we maintain a
lookup table σb : Var → MState for each basic block b.
We define AState as a map lattice constisting of all the mappings from
Var to MState.

AState is still a lattice, with
⊑: For σ1, σ2 ∈ AState, σ1 ⊑ σ2 ⇐⇒ ∀a ∈ Var, σ1(a) ⊑ σ2(a).
⊔ : ∀σ1, σ2 ∈ AState, σ1 ⊔ σ2 = (a, σ1(a) ⊔ σ2(a)) : ∀a ∈ Var

Finally, the Abstract Domain is defined as a mapping from Block to
AState.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 24 / 35



Abstract Domain

To keep track of the abstract values for each basic block, we maintain a
lookup table σb : Var → MState for each basic block b.
We define AState as a map lattice constisting of all the mappings from
Var to MState.

AState is still a lattice, with
⊑: For σ1, σ2 ∈ AState, σ1 ⊑ σ2 ⇐⇒ ∀a ∈ Var, σ1(a) ⊑ σ2(a).

⊔ : ∀σ1, σ2 ∈ AState, σ1 ⊔ σ2 = (a, σ1(a) ⊔ σ2(a)) : ∀a ∈ Var

Finally, the Abstract Domain is defined as a mapping from Block to
AState.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 24 / 35



Abstract Domain

To keep track of the abstract values for each basic block, we maintain a
lookup table σb : Var → MState for each basic block b.
We define AState as a map lattice constisting of all the mappings from
Var to MState.

AState is still a lattice, with
⊑: For σ1, σ2 ∈ AState, σ1 ⊑ σ2 ⇐⇒ ∀a ∈ Var, σ1(a) ⊑ σ2(a).
⊔ : ∀σ1, σ2 ∈ AState, σ1 ⊔ σ2 = (a, σ1(a) ⊔ σ2(a)) : ∀a ∈ Var

Finally, the Abstract Domain is defined as a mapping from Block to
AState.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 24 / 35



Abstract Domain

To keep track of the abstract values for each basic block, we maintain a
lookup table σb : Var → MState for each basic block b.
We define AState as a map lattice constisting of all the mappings from
Var to MState.

AState is still a lattice, with
⊑: For σ1, σ2 ∈ AState, σ1 ⊑ σ2 ⇐⇒ ∀a ∈ Var, σ1(a) ⊑ σ2(a).
⊔ : ∀σ1, σ2 ∈ AState, σ1 ⊔ σ2 = (a, σ1(a) ⊔ σ2(a)) : ∀a ∈ Var

Finally, the Abstract Domain is defined as a mapping from Block to
AState.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 24 / 35



Transfer Functions

Since the analysis runs on LLVM IR, there is a transfer function for each
LLVM instruction according to its semantics.
In particular, we focus on

• load

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 25 / 35



Transfer Functions

Since the analysis runs on LLVM IR, there is a transfer function for each
LLVM instruction according to its semantics.
In particular, we focus on

• load

• store

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 25 / 35



Transfer Functions

Since the analysis runs on LLVM IR, there is a transfer function for each
LLVM instruction according to its semantics.
In particular, we focus on

• load

• store

• GetElementPtr

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 25 / 35



Transfer Functions

Since the analysis runs on LLVM IR, there is a transfer function for each
LLVM instruction according to its semantics.
In particular, we focus on

• load

• store

• GetElementPtr

• Call

• Invoke

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 25 / 35



Function Calls

When analyzing instructions that call other functions, such as Call and
Invoke, the analysis performs context-sensitive interprocedural analysis:
different functions need different treatments. In particular:

• Functions that allocate heap memory:
taint source of the algorithm: the resulting variable stores heap
memory, so its abstract state will be Alloc.

• Functions that borrow a reference or move the ownership:
these functions change the abstract state of heap memory into either
Borrowed or Moved.

• Foreign functions called through FFI:
potentially vulnerable functions, analyze these functions and see
whether there are any bugs.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 26 / 35



Function Calls

When analyzing instructions that call other functions, such as Call and
Invoke, the analysis performs context-sensitive interprocedural analysis:
different functions need different treatments. In particular:

• Functions that allocate heap memory:

taint source of the algorithm: the resulting variable stores heap
memory, so its abstract state will be Alloc.

• Functions that borrow a reference or move the ownership:
these functions change the abstract state of heap memory into either
Borrowed or Moved.

• Foreign functions called through FFI:
potentially vulnerable functions, analyze these functions and see
whether there are any bugs.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 26 / 35



Function Calls

When analyzing instructions that call other functions, such as Call and
Invoke, the analysis performs context-sensitive interprocedural analysis:
different functions need different treatments. In particular:

• Functions that allocate heap memory:
taint source of the algorithm: the resulting variable stores heap
memory, so its abstract state will be Alloc.

• Functions that borrow a reference or move the ownership:

these functions change the abstract state of heap memory into either
Borrowed or Moved.

• Foreign functions called through FFI:
potentially vulnerable functions, analyze these functions and see
whether there are any bugs.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 26 / 35



Function Calls

When analyzing instructions that call other functions, such as Call and
Invoke, the analysis performs context-sensitive interprocedural analysis:
different functions need different treatments. In particular:

• Functions that allocate heap memory:
taint source of the algorithm: the resulting variable stores heap
memory, so its abstract state will be Alloc.

• Functions that borrow a reference or move the ownership:
these functions change the abstract state of heap memory into either
Borrowed or Moved.

• Foreign functions called through FFI:

potentially vulnerable functions, analyze these functions and see
whether there are any bugs.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 26 / 35



Function Calls

When analyzing instructions that call other functions, such as Call and
Invoke, the analysis performs context-sensitive interprocedural analysis:
different functions need different treatments. In particular:

• Functions that allocate heap memory:
taint source of the algorithm: the resulting variable stores heap
memory, so its abstract state will be Alloc.

• Functions that borrow a reference or move the ownership:
these functions change the abstract state of heap memory into either
Borrowed or Moved.

• Foreign functions called through FFI:
potentially vulnerable functions, analyze these functions and see
whether there are any bugs.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 26 / 35



Overview

1 Introduction

2 Background

3 Security and Memory Management Issues via FFI

4 Abstract Interpretation

5 Algorithms

6 Evaluation and Conclusion

7 Conclusion

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 27 / 35



Fixed-Point Algorithm

FFIChecker traverses a given CFG and iteratively runs transfer functions to
update the abstract state until it reaches a fixed point. The fixed-point
algorithm chosen is the classical worklist algorithm.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 28 / 35



Fixed-Point Algorithm

FFIChecker traverses a given CFG and iteratively runs transfer functions to
update the abstract state until it reaches a fixed point. The fixed-point
algorithm chosen is the classical worklist algorithm.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 28 / 35



Context-Sensitive Interprocedural Analysis

To avoid duplicated analysis for the same function, FFIChecker implements
a summary-based method: it caches previously computed results
(summaries) in a lookup table cache : ((f, in state), out state) that maps
a calling context (f, in state) to an output out state.

Before analyzing a function, it first check whether there is an existing
summary that has been computed. If it is the case, the fixed-point
algorithm is skipped and the result is directly returned. If not, the
fixed-point algorithm is performed and the analysis result is cached in the
lookup table.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 29 / 35



Context-Sensitive Interprocedural Analysis

To avoid duplicated analysis for the same function, FFIChecker implements
a summary-based method: it caches previously computed results
(summaries) in a lookup table cache : ((f, in state), out state) that maps
a calling context (f, in state) to an output out state.

Before analyzing a function, it first check whether there is an existing
summary that has been computed. If it is the case, the fixed-point
algorithm is skipped and the result is directly returned. If not, the
fixed-point algorithm is performed and the analysis result is cached in the
lookup table.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 29 / 35



Overview

1 Introduction

2 Background

3 Security and Memory Management Issues via FFI

4 Abstract Interpretation

5 Algorithms

6 Evaluation and Conclusion

7 Conclusion

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 30 / 35



Evaluation

FFIChecker also tag a confidence level on each generated warning,
depending on how much information it can leverage during the analysis.

For example, the LLVM IR of a foreign function is not always available
because it may come from a dynamically linked C library. In this case,
FFIChecker cannot further analyze the foreign function, so it generates
warnings with lower confidence.
This design helps to suppress false alarms.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 31 / 35



Evaluation

FFIChecker also tag a confidence level on each generated warning,
depending on how much information it can leverage during the analysis.

For example, the LLVM IR of a foreign function is not always available
because it may come from a dynamically linked C library. In this case,
FFIChecker cannot further analyze the foreign function, so it generates
warnings with lower confidence.
This design helps to suppress false alarms.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 31 / 35



Evaluation

FFIChecker also tag a confidence level on each generated warning,
depending on how much information it can leverage during the analysis.

For example, the LLVM IR of a foreign function is not always available
because it may come from a dynamically linked C library. In this case,
FFIChecker cannot further analyze the foreign function, so it generates
warnings with lower confidence.
This design helps to suppress false alarms.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 31 / 35



Evaluation

For testing FFIChecker has been collected 987 packages that are of
category external-ffi-bindings or depend on other packages that assist the
use of FFI, for a total of 3,232,574 lines of Rust and 46,321,573 lines of
C/C++.

On this dataset, FFIChecker generates 222 warnings. Manually inspect
them, 34 bugs (19 memory leaks, 3 exception-related bugs and 12
undefined behaviours) has been confirmed.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 32 / 35



Evaluation

For testing FFIChecker has been collected 987 packages that are of
category external-ffi-bindings or depend on other packages that assist the
use of FFI, for a total of 3,232,574 lines of Rust and 46,321,573 lines of
C/C++.

On this dataset, FFIChecker generates 222 warnings. Manually inspect
them, 34 bugs (19 memory leaks, 3 exception-related bugs and 12
undefined behaviours) has been confirmed.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 32 / 35



Overview

1 Introduction

2 Background

3 Security and Memory Management Issues via FFI

4 Abstract Interpretation

5 Algorithms

6 Evaluation and Conclusion

7 Conclusion

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 33 / 35



Conclusion

Most bugs we found are memory leaks. We interpret this as a limitation of
Rust’s security guarantees: memory leak is considered safe in Rust. The
reason behind this design choice is that leaking resources is possible in
pure safe Rust Therefore, the authors of the Rust standard library decide
not to mark functions that leak memory as unsafe.

As a result, the Rust compiler will not give any warnings when
inexperienced programmers misuse these functions and cause memory
leaks, leading to denial of service attacks or information leakage.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 34 / 35



Conclusion

Most bugs we found are memory leaks. We interpret this as a limitation of
Rust’s security guarantees: memory leak is considered safe in Rust. The
reason behind this design choice is that leaking resources is possible in
pure safe Rust Therefore, the authors of the Rust standard library decide
not to mark functions that leak memory as unsafe.

As a result, the Rust compiler will not give any warnings when
inexperienced programmers misuse these functions and cause memory
leaks, leading to denial of service attacks or information leakage.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 34 / 35



Based on the work of Z. Li, J. Wang, M. Sun and J. C. S. Lui

Thank You.

Marco Antonio Corallo (UniPi) Rust/C FFI Issues April 5, 2023 35 / 35

https://link.springer.com/chapter/10.1007/978-3-031-17143-7_33

	Introduction
	Background
	Security and Memory Management Issues via FFI
	Abstract Interpretation
	Algorithms
	Evaluation and Conclusion
	Conclusion

